Hydrodynamic slip length as a surface property.
نویسندگان
چکیده
Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.
منابع مشابه
Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
We investigate the behavior of the slip length in Newtonian liquids subject to planar shear bounded by substrates with mixed boundary conditions. The upper wall, consisting of a homogenous surface of finite or vanishing slip, moves at a constant speed parallel to a lower stationary wall, whose surface is patterned with an array of stripes representing alternating regions of no shear and finite ...
متن کاملHydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
We investigate the slip boundary condition for flows past a chemically patterned surface. Molecular dynamics simulations show that fluid forces and stresses vary laterally along the patterned surface. A subtraction scheme is developed to verify the validity of the Navier slip boundary condition, locally, for the patterned surface. A continuum hydrodynamic model is formulated using the Navier-St...
متن کاملInterfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
The dynamics and structure of water at hydrophobic and hydrophilic diamond surfaces is examined via non-equilibrium Molecular Dynamics simulations. For hydrophobic surfaces under shearing conditions, the general hydrodynamic boundary condition involves a finite surface slip. The value of the slip length depends sensitively on the surface water interaction strength and the surface roughness; heu...
متن کاملNo-Slip Boundary Condition Switches to Partial Slip When Fluid Contains Surfactant
Physisorbed surfactant can change the hydrodynamic boundary condition of oil flow from “stick” to “partial slip”, provided that the shear stress on the wall exceeds a threshold level that decreases with increasing surface coverage of surfactant. To demonstrate this, Newtonian alkane fluids (octane, dodecane, tetradecane) were placed between molecularly smooth surfaces that were either wetting (...
متن کاملSurface roughness and interfacial slip boundary condition for quartz crystal microbalances
The response of a quartz crystal microbalance ~QCM! is considered using a wave equation for the substrate and the Navier-Stokes equations for a finite liquid layer under a slip boundary condition. It is shown that when the slip length to shear wave penetration depth is small, the first-order effect of slip is only present in the frequency response. Importantly, in this approximation the frequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2016